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Problem 1:

1) Consider a generalized linear model framework, where the response variables Yi have distri-
bution within the exponential family, i.e.

f(yi | θi) = exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
where the scale parameter φ is assumed to be known and θi is some function of the regressors
and their coefficients which is specified by the data model and the link function. Denote the
true mean of the responses as µi = E[yi | θi]. The link function g relates the covariates to
the mean by

g(µi) = X′iβ

where X′i denotes a p-dimensional vector of covariates for the ith observation. In order perform
model fitting, we complete the model specification by placing a normal prior distribution on
the regression coefficients β, i.e. apriori

β ∼ N(a,R).

By specifying the prior and likelihood in this fashion, the posterior distribution is

f(β | Y,X) ∝ exp

{
−1

2
(β − a)′R−1(β − a) +

n∑
i=1

yiθi − b(θi)
φ

}
.

The idea is to approximate this posterior distribution with a normal distribution that will be
used for the proposal distribution. To achieve this, a second order Taylor expansion of the
likelihood term

`(β) =

n∑
i=1

yiθi − b(θi)
φ

is carried out around some value of β, say β(t−1), in order to combine with the prior term.
The result is a normal distribution with mean vector

m(t) =

(
R−1 +

1

φ
X′W

(
β(t−1))X)−1 × (R−1a +

1

φ
X′W

(
β(t−1))ỹ(β(t−1)))

and covariance matrix

C(t) =

(
R−1 +

1

φ
X′W

(
β(t−1))X)−1 ,
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where W
(
β(t−1)) is a diagonal weight matrix with entries

Wii

(
β(t−1)) =

1

b′′(θi)g′(µi)2

and ỹ
(
β(t−1)) is a vector transformed observations with entries

ỹi
(
β(t−1)) = X′iβ + (yi − µi)g′(µi).

Then, Jβ(t) = N
(
m(t),C(t)

)
approximates the true posterior distribution and thus leads to

high acceptance ratios in a metropolis-hastings algorithm. This method is summarized as
follows:

1. Initialize β(0) and set t = 1;

2. Propose β? from Jβ(t) and accept it with probability p = min{r, 1}, where

r =
f(β? | Y,X)

f(β(t) | Y,X)

Jβ?

(
β(t)

)
Jβ(t)

(
β?
) ;

3. Increment t and return to step 2.

The construction of the proposal parameters m(t) and C(t) approximates the posterior mode
and covariance matrix for β. Now, we describe this approach under a logistic regression
model.

2) Consider the following logistic data model

yi ∼ Bin(πi, 1)

log

(
πi

1− πi

)
= β0 + β1xi.

First, the distribution of the observed data is a member of the exponential family since

f(yi | πi) = πyii (1− πi)1−yi =

(
π

1− πi

)yi
(1− πi)

= exp

{
yi log

πi
1− πi

+ log(1− πi)
}
.

Therefore, we see that θi = log
πi

1− πi
, b(θi) = log(1 + eθi), and φ = 1. For notational ease,

β = (β0, β1)
′, Y = (y1, ..., yn)′, and X = (1n, (x1, ..., xn)′).

Placing a normal prior distribution on β, the posterior distribution is

f(β | Y,X) ∝
n∏
i=1

f(yi | πi)f(β) ∝ exp

{
−1

2
(β − a)′R−1(β − a) +

n∑
i=1

yi log
πi

1− πi
+

n∑
i=1

log(1− πi)

}
,
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where πi is obtained by inverting the link function, i.e.

πi =
exp{β0 + β1xi}

1 + exp{β0 + β1xi}
.

Now we compute the necessary components for the proposal distribution, namely

b′′(θi) =
eθi(

1 + eθi
)2

g′(µi) =
1

πi(1− πi)
since µi = πi.

It now follows that the diagonal weight matrix W
(
β(t−1)) has entries

Wii

(
β(t−1)) = πi(1− πi)

and the transformed observations take the form

ỹi
(
β(t−1)) = β0 + β1xi +

yi − πi
πi(1− πi)

.

Finally, the proposal distribution in the metropolis-hastings algorithm is N(m(t),C(t)), where

m(t) = C(t) ×
(
R−1a + X′W

(
β(t−1))ỹ(β(t−1)))

C(t) =
(
R−1 + X′W

(
β(t−1))X)−1 .

Now the full algorithm summarized in part 1 of this problem can be implemented.

3) The code can be found in the appendix.

4) The estimates from both algorithms can be found below:

Parameter BIWLS Regular MH

β0 −4.055 −4.031
β1 0.100 0.099

Therefore, both algorithms seem to approximate the parameters in a similar fashion. We
will analyze these two approaches further. Firstly, the autocorrelation using a regular MH
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algorithm is:

which is the autocorrelation plot for β0 and β1, respectively. The autocorrelation plot using
the BIWLS algorithm is

for β0 and β1, respectively. The autocorrelation for the BIWLS is far less, and this was even
without any thinning. Lastly, the effective sample size for β0 was 7270 out of 10000 samples
and for β1 was 7898 out of 10000 samples with the BIWLS. Comparatively, the effective
sample size was 311 for β0 and 305 for β1 out of 1000 samples, which also is not as good as
the BIWLS method. The last note worthy thing to mention is the acceptance rate for (β0, β1)
was about 95% while the acceptance rate for β0 and β1 under the regular MH algorithm was
about 24% each.
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Problem 2:

1) The idea of a conditional means prior (CMP) is with p predictors, i.e. p parameters, we
include our prior information to construct an informative prior distribution to be used in a
generalized linear model framework. This is typical tough to do in GLMs. In a GLM, we
have

mi := E[Yi | Xi] = g−1(X′iβ)

where g is a specified link function that relates the covariates to the mean response. The
informative prior for β is induced by a CMP on the new mean vector m̃ = (m̃1, ..., m̃n),
where

m̃i = E[Ỹi | X̃i]

where Ỹi is some observable response at covariate X̃i, where the selected p covariate vectors
X̃i are linearly independent. Now, for each new mean m̃i, elicit the independent prior π(m̃i).
Then, the CMP is given by

π(m̃) =

p∏
i=1

π(m̃i).

Define G(m̃) that applies g to each element, i.e. entries g(m̃i). The link function gives the
relationship β = X̃−1G(m̃), and so through a transformation the induced prior is

π(β) ∝
p∏
i=1

π(m̃i)/g
′(m̃i

)
∝

p∏
i=1

π
(
g−1
(
X̃iβ

))
/g′
(
g−1
(
X̃iβ

))
.

2) Now we outline the details to develop the CMP for a logistic regression model. Consider the
model of the form

Yi ∼ Bin(mi, 1)

g(mi) = log

(
mi

1−mi

)
= Xiβ

where

mi = E[Yi | Xi] = g−1(Xiβ) =
exp{Xiβ}

1 + exp{Xiβ}
which is a logistic regression model. Notice that

g′(mi) = m−1i (1−mi)
−1 =⇒ g′

(
g−1
(
X̃iβ

))
=

(
1 + exp{Xiβ}

)2
exp{Xiβ}

.

Then, once specifying the independent priors π(m̃i), the induced prior is

π(β) ∝
p∏
i=1

π
(
g−1
(
X̃iβ

)) exp{Xiβ}(
1 + exp{Xiβ}

)2 .
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In logistic regression, a reasonable choice for the independent priors are

m̃i ∼ Beta(ai, bi)

and therefore the induced prior for the regression coefficients is

π(β) ∝
p∏
i=1

(
g−1
(
X̃iβ

))ai−1(
1− g−1

(
X̃iβ

))bi−1 exp{Xiβ}(
1 + exp{Xiβ}

)2
∝

p∏
i=1

(
g−1
(
X̃iβ

))ai(
1− g−1

(
X̃iβ

))bi
.

3) Now we develop a sampling strategy to draw posterior samples for β under the CMP prior
using the technique discussed in problem 1. Consider a binomial data model of the form

Ỹi ∼ Bin(ni, pi)

log

(
pi

1− pi

)
= X̃iβ.

The likelihood function for a single observation in this situation is given by

f
(
Ỹi | X̃i

)
∝ pYii (1− pi)ni−Yi .

Comparing this function to the induced prior in part 2), we define the parameters in the
following way:

ai = Ỹi and bi = ni − Ỹi.

Now, for sampling, we implement the method discussed in problem 1. Combine variables as

Y? = (Y, Ỹ1, ..., Ỹp)
′

X? = (X, X̃1, ..., X̃p)
′

where Y = (Y1, ..., Yn) defined in part 2). Then, using the derivations from problem 1,

C =
(
X?TW(β)X?

)−1
m = C×

(
X?TW(β)Y

?
(β)
)

where Y
?
(β) is a vector of transformed observations, i.e. transformation of Y?, with entries

Y
?
j (β) = Xjβ +

Yj −mj

mj(1−mj)
for j = 1, ..., n

Y
?
i (β) = X̃iβ +

Ỹi − nipi
nipi(1− pi)

for i = 1, ..., p

and W(β) is the diagonal weight matrix with entries

Wii(β) = nipi(1− pi).

Then, we use the algorithm discussed in problem 1.
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Problem 3:

Here we develop a metropolis algorithm to sample the ρ term in the CAR model from problem 2
of homework 3. Namely, consider the spatial regression model given by

Yi = β0 + bi + εi,

where εi
iid∼ N(0, σ2) for i = 1, ..., n. We assume that the spatial random effects follow the

CAR(σ2τ2, ρ) model, i.e.
b = (b1, ..., bn)′ ∼ N(0, σ2τ2(D− ρW).

It can be shown that ρ must be between −1 and 1, and as a result we will assume ρ ∼ Unif(−1, 1).
Then, the posterior distribution for ρ is simply

π(ρ | b, σ2, τ2) ∝ exp

{
− 1

2σ2τ2
b′(D− ρW)b

}
.

Now, for the proposal distribution, we will consider a symmetric random walk, namely

J
(
ρ | ρ(t)

)
= Unif

(
ρ(t) − c, ρ(t) + c

)
where c is a tuning parameter to achieve an acceptance probability of roughly 35%. Denote θ−ρ as
the set of parameters to update, excluding ρ. Then, the algorithm is as follows:

1. Initialize θ(0) and set t = 1.

2. Update θ
(t)
−ρ via the Gibbs sampling scheme of problem 2 of homework 3.

3. Propose ρ? from J
(
ρ | ρ(t)

)
and accept it with probability p = min{r, 1}, where

r =
π(ρ? | b, σ2, τ2)
π(ρ(t) | b, σ2, τ2)
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APPENDIX

###################################
###################################
#####
##### Chase Joyner
##### 882 Homework 4
#####
###################################
###################################

## Required l i b r a r i e s ##
l i b r a r y (MASS)
l i b r a r y (mvtnorm)
l i b r a r y ( coda )

###################################
##### Problem 1

BIWLS = func t i on (Y, X, i t e r = 1e4 ){

## P r e l i m i n a r i e s ##
n = length (Y)
p = dim (X) [ 2 ]
R = 100∗ diag (p)
a = rep (1 , p)

## I n i t i a l va lue s ##
beta = rep (0 , p)
acc = 0

## Save r e co rd s ##
Beta = matrix (−99 , nrow = i t e r , nco l = p)

## Compute only once ##
IR = s o l v e (R)
IRa = IR %∗% a

## Link func t i on f o r p i ##
l i n k = func t i on (u){

expXB = exp (X %∗% u)
va l = expXB / (1 + expXB)
return ( va l )

}

l l i k = func t i on ( s ){
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pi = l i n k ( s )
va l = −(1/2)∗ t ( s−a)%∗%IR%∗%(s−a ) + sum(Y∗ l og ( p i /(1−pi ) ) ) + sum( log (1−pi ) )
re turn ( va l )

}

f o r ( i in 1 : i t e r ){
## Update beta ##
pi . t = as . vec to r ( l i n k ( beta ) )
newY . t = X %∗% beta + (Y − pi . t ) / ( p i . t ∗ (1 − pi . t ) )
Wt = diag ( p i . t ∗ (1 − pi . t ) )
Ct = s o l v e ( IR + t (X) %∗% Wt %∗% X)
mt = Ct %∗% ( IRa + t (X) %∗% Wt %∗% newY . t )
beta . s = as . vec to r ( rmvnorm (1 , mt , Ct ) )
p i . s = as . vec to r ( l i n k ( beta . s ) )
newY . s = X %∗% beta . s + (Y − pi . s ) / ( p i . s ∗ (1 − pi . s ) )
Ws = diag ( p i . s ∗ (1 − pi . s ) )
Cs = s o l v e ( IR + t (X) %∗% Ws %∗% X)
ms = Cs %∗% ( IRa + t (X) %∗% Ws %∗% newY . s )
r = exp ( l l i k ( beta . s ) − l l i k ( beta ) + dmvnorm( beta , ms , Cs , l og = TRUE) − dmvnorm( beta . s , mt , Ct , l og = TRUE) )
z = rbinom (1 , 1 , min ( r , 1 ) )
i f ( z == 1){

beta = beta . s
acc = acc + 1

}
Beta [ i , ] = beta
p r in t ( c ( i ) )

}
re turn ( l i s t ( Beta = Beta , accept = acc / i t e r ) )

}

## Generate some data and run ##
#par ( mfrow = c ( 2 , 1 ) )
#n = 1000
#beta . t rue = c (−1 , 0 . 5 )
#X = cbind ( rep (1 , n ) , rnorm (n , 2 , 1 ) )
#probs = exp (X %∗% beta . t rue ) / (1 + exp (X %∗% beta . t rue ) )
#Y = rbinom (n , 1 , probs )
#r e s = BIWLS(Y, X)
#apply ( res$Beta , 1 , mean)

## Analyze d i abe t e s data ##
l i b r a r y (MASS)
data (Pima . t r )
data (Pima . te )
pima = rbind (Pima . tr , Pima . te )
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Y = as . vec to r ( pima [ , 8 ] )
Y[Y == ”Yes ” ] = 1
Y[Y == ’No ’ ] = 0
Y = as . numeric (Y)
X = cbind (1 , as . matrix ( pima [ , 5 ] ) )
r e s = BIWLS(Y, X)
apply ( res$Beta , 2 , mean)
Beta . mcmc1 = as .mcmc( res$Beta [ 1 , ] )
Beta . mcmc2 = as .mcmc( res$Beta [ 2 , ] )
autocor r . p l o t ( Beta . mcmc1)
autocor r . p l o t ( Beta . mcmc2)
e f f e c t i v e S i z e ( Beta . mcmc1)
e f f e c t i v e S i z e ( Beta . mcmc2)
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